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Table 1.  Mass distributions 

m 1 0.50 0.67 0.80

M 1 0.50 0.67 0.80

2M 2 1.00 0.66 0.40

m '1 0.125 0.4225 0.65

m '2 ~ m '8 0.125 0.0825 0.05
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INTRODUCTION 

In common, a slab for in-plane shear due to seismicity might 

be designed against a difference of adjoining bays’ 

displacements and the slab stiffness for in-plane shear. Therefore 

no influence of mass distributed on the slab might be considered.  

The investigation of seismic behavior for distributed mass 

system had hardly been conducted. Then objectives of this study 

are: 1) to obtain fundamental information about local shear 

response for the distributed mass system of linear-elastic 

structure by time history analysis, 2) to propose a useful 

fundamental formula for prediction of the maximum local shear 

response in serviceability limit state design.  

ANALYTICAL MODELS 

Consider a frame with 1×2 spans such as previous 

researches1)2), according to its symmetry, a simplified model 

used to analyze in this study consists of two bays with a span 

(Fig. 1). The structure has a linear-elastic bay restoring force and 

story drift relationship as well as the slab. A constant k1 means a 

ratio of stiffness of bay 1 K1 to a sum of two bays’ stiffnesses K1 

and K2. The ratio is the following 
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This analytical model assumes the following: 

a) Uniform mass distribution on the slab which could be 

expressed by Table 1 and Fig. 1  

b) Each mass can move unidirectionally same as the seismicity.  

c) The each bay is expressed as a mass supported by a shear 

spring which corresponds to its story drift. 

d) Similarly the slab is expressed as 6 masses connected with 7 

shear springs Kf
’ which correspond to its in-plane shear 

deformation. The springs have linear elastic behavior.  

The variable structural characteristics in the analytical 

investigations include the following. 
kf : Slab shear stiffness ratio defined as a ratio of the entire 

slab stiffness Kf (Fig. 1(b)) to a sum of stiffness of supporting 

bays K  kf = Kf / K = 0.1 ~ 1000 

T0 : Natural period when the slab is rigid  

0.33, 0.67, 1.00 (sec) 

m1 : Mass ratio of the bay 1 to a sum of mass of the system

 MMm 11  = 0.50, 0.67, 0.80 

where     , , : distributed mass 

 

The distributed mass 
1m  ~ 

8m  can be seen in Table 1. For 

comparison, a lumped mass system might be also used.  

 Applied unidirectional seismic waves are the EL Centro NS 

(1979) scaled such that its PGV (Peak Ground Velocity) 

matched 50 kine and the BCJ level-2 (1994). The integration is 

performed with a two percent of critical damping to the initial 

stiffness of the bays. 

ANALYTICAL RESULTS 

Fig. 2 indicates story drift time histories for BCJ with kf of 1.0. 

Whenever the maximum local shear response is generated for 

slab stiffness ratio kf of 1.0 or greater, the both bays’ story drift 

displacements are always their respective approximate peak 

values in the cycle. Although the analytical results in case of T0 

= 0.67 with BCJ are illustrated here, the entire results including 

three different values of T0 with two different waves, have found 

that the natural period and the wave hardly affect the slab shear 

response behaviors. Fig. 3 displays mass displacements and local 

shear distribution in 

the slab for BCJ when 

maximum local shear 

response occurred. 

The displacement 

distribution is not 

linear. And dynamic 
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Figure 1. Frame structure and analytical model 
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shear response variation along the axis normal to the direction of 

seismicity can be seen. The shear distribution is approximately 

proportional to the distance from the bays. That means inertial 

force applied to the mass on the slab resulted in these behaviors. 

From these facts the inertial force of mass on the slab could be 

thought transferred to the nearer bay. These findings could not 

be obtained by the lumped mass system. As shown in Fig. 4, it is 

apparent that the lumped mass system could underestimate the 

maximum local shear response in the slab with the distributed 

mass. In this figure, Vf max and MSA designate maximum slab 

shear response and a sum of story shear response of the bays, 

respectively. 

PREDICTION OF SHEAR RESPONSE 

Predictable formulae of the shear response based on balance of 

static force for the lumped mass system were already reported as 

1st terms of right side of following equations respectively1)2). 

Assume that inertial force of the mass might be transferred to 

nearer bay, Eqs. (1) and (2) are proposed here. Considering 

practicality and convenience of the seismic design procedure, 

Eq. (2) is preferable for prediction of the maximum local shear.  

  A
f

f
f MS

kkk

kmk
V





11

11
max 1 A

n

ni
i

n

i
i Smm 








 





1

12

2

2

,max  (1) 

Af MSkmV 11max       A

n

ni
i

n

i
i Smm 








 





1

12

2

2

,max  (2) 

where n and m’
i designate number of mass and distributed mass 

respectively, SA designates design spectral response acceleration.  

 Fig. 5 indicates maximum local shear response comparisons 

between analytical and predicted values for the distributed mass. 

For the slab stiffness ratio kf of 3.0 or greater, increasing the 

value of kf could not influence the analytical slab shear response. 

By taking account for inertial force applied to the mass not only 

on the bays but also on the slab, in addition to difference of the 

story drift between two bays of both sides of the slab, the 

maximum local shear response in the slab could be predicted 

appropriately by Eq. (1). When the slab stiffness ratio kf is 3.0 or 

greater, Eq. (2) is also available for the prediction. 

CONCLUSIONS 

a) The distributed mass system showed dynamic shear response 

variations along the axis normal to the direction of seismicity. 

b) The lumped mass system might underestimate the maximum 

local shear response for the distributed mass system. 

c) The maximum local shear response in the slab with the 

distributed mass could be predicted appropriately by newly 

proposed formulae.  
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Figure 2. Story drift time histories at maximum slab shear 
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Figure 3. Distributions of displacement and shear
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Figure 4. Local shear response comparisons between 
distributed and lumped mass systems for BCJ 

Figure 5. Maximum local shear response comparisons 
between analytical and predicted values 
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