柱継手高力ボルト接合の開発 その5 設計方法(高力ボルト及びスプライスプレート)

正会員	○小村欣嗣*	正会員	横山重和*
正会員	井口智晴*	正会員	川上寛明**
正会員	中野英行**	正会員	宍戸唯一**
正会員	皆川隆之****		

柱継手	設計式	超高力ボル
角形鋼管柱	省溶接	安全性

1 目的

その4で柱継手母材の検定方法を示したが、ここでは 高力ボルト及びスプライスプレート(以下、SPL)の検定 方法、設計式を提案する。

2 設計方針

設計方針はその4に示す。

3 検定方法

3.1 高力ボルトの検定式

検定式及び記号は以下の通りとする。考え方及び記号 の説明を図1に示す。なお、作用する荷重はすべて柱継手 中央位置のものとする。

図1高力ボルトの検定時の考え方及び記号

```
長期の検定式
```

```
LTv=LN/n+LM/(db×n/2)

LTh=LQ/(n/\sqrt{2})

\sqrt{(LTv^2+LTh^2)} \le LTy

<u>保有耐力時の検定式</u>

UTv= | \alpha \times (UN+LN) + LN | /n+\alpha \times uM/(db \times n/2)

UTh=\alpha \times uQ/(n/\sqrt{2})

\sqrt{(UTv^2+UTh^2)} \le Ty

<u>Ds 算定時の検定式</u>

UD_sTv= | \alpha \times (UD_sN+LN) + LN | /n+\alpha \times UD_sM/(db \times n/2)

UD_sTh=\alpha \times UD_sQ/(n/\sqrt{2})

\sqrt{(UD_sTv^2+UD_sTh^2)} \le Tu

<u>記号</u>

LN, uN:長期及び保有耐力時の桂軸力

LM, uM:長期及び保有耐力時の桂動力

LQ, uQ:長期及び保有耐力時の柱のせん断力
```

uDsN: Ds 算定時の柱軸力 uDsM: Ds 算定時の柱継手位置での曲げモーメント uDsQ: Ds 算定時の柱のせん断力 LTv:長期にボルトに作用する鉛直力 LTh:長期にボルトに作用する鉛直方向の力 uTv:保有耐力時にボルトに作用する鉛直方向の力 uTh:保有耐力時にボルトに作用する鉛直方向の力 UDsTv: Ds 算定時にボルトに作用する鉛直方向の力 UDsTh: Ds 算定時にボルトに作用する鉛直方向の力 Ty: ボルト1本の長期許容耐力 Ty:ボルト1本の短期許容耐力

Tu: ボルト1本の最大耐力

n:ボルト本数(片側の継手に用いる本数とする。db:ボルト中心間距離(図1参照)

- α:接合部係数(その4 表1参照)
- 3.2 スプライスプレート (SPL) の検定式

長期及び保有耐力 時の SPL の検定は図 2 に示すように、曲げ モーメントが最大と なる最外縁とせん断 力が最大となる中央 の 2 カ所で行う。ま た、その 4 の柱継手 母材の検定方法で示 したとの同様にボル トのすべり耐力の 1/3 を考慮して相当断面 係数 (sZeq)を定め る。

長期の検定式

$$\begin{split} {}_{L}N/{}_{L}Na/8 + {}_{L}M/sZeq/{}_{L}\sigma y &\leq 1.0 \\ \sqrt{(\sigma c^{2} + 3 \times \tau max^{2})} &\leq_{L}\sigma y \\ \sigma c = {}_{L}N/{}_{L}Na/8 \times {}_{L}\sigma y + {}_{L}M/sZeq \times dc/ds \\ \tau max = 1.5 \times {}_{L}Q/4\sqrt{2}/sAe \\ {}_{L}Na = min\{(sAe \times {}_{L}\sigma y + {}_{L}Ty/3), sA \times {}_{L}\sigma y\} \end{split}$$

Evolution of Column Joint Used High-strength Bolt – Part 5: Design Method(High-Strength Bolt and Splice Plate) Yoshitsugu Omura, Shigekazu Yokoyama, Tomoharu Iguchi, Hiroaki Kawakami, Hideyuki Nakano, Yuichi Shishido, Takayuki Minagawa

SPL の最大耐力の検定式もその4の柱継手母材の検定 式と同様の方法で求める。図3に全仕様の各応力状態の プロット及び検定式を示す。全プロットに対して安全側 の評価となっている。

図4 荷重-変形関係及び各設計値

- *積水ハウス株式会社
- ** 日鉄建材株式会社
- ***日本製鉄株式会社
- **** 株式会社えびす建築研究所

以上の検討より、Ds 算定時の検定式を示す。

```
Ds 算定時の検定式
```

 $\{ \mid \alpha \times (_{\text{UDs}}\text{N-}_{\text{L}}\text{N}) +_{\text{L}}\text{N} \mid /s\text{Ae}/\sigma u/8 \}^{1.1} + \alpha \times _{\text{UDs}}\text{M}/s\text{Zpe}/\sigma u \leq 1.0$ $\tau \max \leq \sigma u /\sqrt{3}$

 τ max=1.5× α ×_{UDs}Q/4 $\sqrt{2}$ / sAe

記号

sZpe: SPL のボルト孔を考慮した塑性断面係数 σu:引張強さ

4 考察及びまとめ

ここでは、その1で報告した構造実験結果(Case5)と その4及び本論文で提案した検定式を比較することで検 定式の妥当性を検証する。図4に荷重-変形関係及び検 定式により求めた各荷重設計値を示す。また、表1に実 験結果と計算値の比較を示す。

柱継手母材、高力ボルト、SPLの計算値は仕様や作用 する荷重によって、大小関係が変わることがある。Case5 では降伏荷重は、SPLが最も低く、柱継手母材、高力ボ ルトの順となっている。したがって、降伏荷重は SPLの 値となる。実験での降伏荷重(初期剛性の1/3となった時 点の荷重)は SPLを上回っており、構造安全性が確保さ れていることが分かる。また、ボルトの初期すべり時の 荷重も検定式のボルトのすべり荷重の計算値を上回って いる。終局荷重は SPL と高力ボルトがほぼ同じ値(高力 ボルトが約0.5%低い)となっている。実験値はその値を 上回っており構造安全上問題ないことが分かる。なお、 柱継手母材はそれよりかなり高い値となっている。

今回採用した他の試験体(Case1~3)でも実験値は検定 式による降伏荷重、すべり荷重、終局荷重を上回ってお り、その4及び本論文で提案した検定式で設計可能であ る。

表1 実験結果と計算値の比較

	項目	値	判定
剛性	①初期剛性計算値	64.9	@/①=
(kN/mm)	②初期剛性実験値	58.0	0.89
降伏荷重	③継手母材降伏荷重計算值	1,085	
(kN)	④SPL 降伏荷重計算值	991	6/5=
	⑤降伏荷重計算值 min(③,④)	991	1.12
	⑥降伏荷重実験値	1,109	
すべり荷重	⑦bolt すべり荷重計算値	1,127	8/7=
(kN)	⑧bolt すべり荷重実験値	1,206	1.07
終局荷重	⑨継手母材全塑性荷重計算値	2,404	
(kN)	⑩SPL 全塑性荷重計算值	1,790	
	⑪bolt 破断荷重計算值	1,781	(13)/(12)=
	⑫終局荷重計算值 min(⑨, ⑩, ⑪)	1,781	1.11
	13終局荷重実験値	1,970	

* Sekisui House LTD.

** Nippon Steel Metal Products Co.,LTD

*** Nippon Steel Corporation

**** Corporation Ebisu Architecture Laboratory